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This paper investigates the three-dimensional stability of a pair of co-rotating vertical
vortices in a rotating strongly stratified fluid. In a companion paper (Otheguy,
Chomaz & Billant 2006), we have shown that such a basic flow in a strongly stratified
fluid is affected by a zigzag instability which bends the two vortices symmetrically.
In the non-rotating flow, the most unstable wavelength of this instability scales as
the buoyancy length and its growth rate scales as the external strain that each vortex
induces on the other one. Here, we show that the zigzag instability remains active
whatever the magnitude of the planetary rotation and is therefore connected to the tall-
column instability in quasi-geostrophic fluids. Its growth rate is almost independent
of the Rossby number. The most amplified wavelength follows the universal scaling

λ= 2πFhb
√

γ1/Ro2 + γ2/Ro + γ3, where b is the separation distance between the two
vortices, (γ1, γ2, γ3) are constants, Fh is the horizontal Froude number and Ro the
Rossby number (Fh = Γ/πa2N , Ro = Γ/πa2f , where Γ is the circulation of each vor-
tex, a the vortex radius, N the Brunt–Väisälä frequency and f the Coriolis parameter).
When Ro = ∞, the scaling λ∝ Fhb found in the companion paper Otheguy et al. (2006)
is recovered. When Ro → 0, λ∝ bf/N in agreement with the quasi-geostrophic theory.
In contrast to previous results, the wavelength is found to depend on the separation
distance between the two vortices b, and not on the vortex radius a.

1. Introduction
Oceanic and atmospheric flows are characterized by two important features: a

stable density stratification measured by the Brunt–Väisälä frequency N , and the
planetary rotation measured by the Coriolis parameter f . The atmosphere at mid-
latitudes is typically characterized by a ratio f/N =0.01 and the oceans by f/N =0.1.
A strong stratification reduces the vertical scale to the buoyancy scale U/N , where U

is the horizontal velocity scale, whereas a rapid rotation tends to increase the vertical
scale. Turbulence in stratified fluids is organized into thin horizontal layers (Fincham,
Maxworthy & Spedding 1996; Park, Whitehead & Gnanadeskian 1994; Godeferd &
Staquet 2003; Waite & Bartello 2004), while turbulence in rotating fluids is organized
into tall eddy columns (Hopfinger, Browand & Gagne 1982; Baroud et al. 2003). In
the joint conditions of rapid rotation and strong stratification (quasi-geostrophic), the
vortices have a lens-like shape with a height-to-width aspect ratio H/L proportional
to f/N (Charney 1948; Griffiths & Linden 1981; Dritschel & de la Torre Juárez
1996). In order to understand the transition between strongly stratified flows and
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quasi-geostrophic flows as well as the selection of the vertical scale in geophysical
flows, we investigate the three-dimensional stability of co-rotating vertical vortices.
Such a flow plays a major role in turbulence through the merging process.

We first investigated the three-dimensional stability of a pair of co-rotating vertical
vortices in a stratified fluid in the absence of planetary rotation (see the companion
paper, Otheguy, Chomaz & Billant 2006). We observed the elliptic instability when
the horizontal Froude number Fh =Γ/πa2N (where Γ is the vortex circulation and a

the vortex radius) is large: Fh > 10. In contrast, we found that for strong stratification
(Fh < 2.85) the most unstable three-dimensional instability is a zigzag instability
similar to the instability observed for counter-rotating vortices (Billant & Chomaz
2000). The most unstable wavelength of this instability is proportional to Fhb, where
b is the separation distance between the two vortices. Its growth rate scales like the
external strain rate S =Γ/2πb2. The instability consists of a symmetric bending of
the two vortices which generates horizontal layers of thickness proportional to the
buoyancy length. In the successive layers, the vortices are alternately brought closer
together or farther from each other every half a wavelength along the vertical direction.

A similar bending instability, named tall-column instability, has been observed by
Dritschel & de la Torre Juárez (1996) and Dritschel (2002) in quasi-geostrophic
fluids (strong stratification and rapid rotation) where the most unstable wavelength is
proportional to Lhf/N , where Lh is the characteristic horizontal length scale. In the
case of two co-rotating vortices, this instability has been shown to enhance or delay
(even inhibit) the vortex merging depending on the vertical location.

In order to understand the transition between strongly stratified flows and quasi-
geostrophic flows and the selection of the vertical length scale for finite Rossby
numbers, we investigate herein the effect of planetary rotation on the zigzag instability
of a pair of co-rotating vertical Gaussian vortices.

2. Linear stability analysis
In Otheguy et al. (2006), a two-dimensional quasi-steady basic state (figure 1)

has been obtained numerically using a two-dimensional numerical simulation at
a large Reynolds number (Re = Γ/πν = 16000) and initialized by two co-rotating
axisymmetric vortices with a Gaussian distribution of vorticity. From this initial
condition, the two vortices adapt to each other and evolve quickly towards a quasi-
steady state in the frame of reference rotating at the angular velocity Ωb =Γ/πb2.
The vortex axes are vertical and the ratio of the vortex radius a and the separation
distance b between the vortices is a/b = 0.15. Note that this flow remains a quasi-
steady basic state in the presence of a Coriolis force (representing the effect of a
planetary rotation) since the flow is two-dimensional and incompressible.

The three-dimensional stability analysis of this basic flow is investigated here for
a strongly stratified and rotating fluid. The linearized Navier–Stokes equations under
the Boussinesq approximation governing the perturbations of velocity u′ = (u′

x, u
′
y, u

′
z),

vorticity ω′, pressure p′ and density ρ ′ are

∂u′

∂t
+ ωbez × u′ + ω′ × ub + (2Ωb + f )ez × u′ = −∇

(
p′

ρ0

+ ub · u′
)

− g
ρ ′

ρ0

ez + ν�u′,

∇ · u′ = 0,

∂ρ ′

∂t
+ ub · ∇ρ ′ − ρ0

g
N2u′

z = D�ρ ′,




(2.1)
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Figure 1. Streamlines (contour lines) and vorticity field (background grey levels) of the basic
state. The vorticity contours are superimposed on the streamlines showing that this basic state
is quasi-steady.

where ub is the velocity of the basic state, ωb its vorticity, ez the unit vector in the
upward vertical direction, f the Coriolis parameter equal to twice the local planetary
rotation rate in the f -plane approximation, ρ0 a constant reference density, g the
acceleration due to gravity, ν the kinematic viscosity, N the Brunt–Väisälä frequency
and D the molecular diffusivity of the stratifying agent. As the basic state is uniform
along the z-axis, the perturbations can be written as follows:

[u′; ω′; p′; ρ ′](x, y, z, t) = [u; ω; p; ρ](x, y, kz, t) eikzz + c.c., (2.2)

where kz is the vertical wavenumber and c.c. denotes the complex conjugate. A
pseudo-spectral code has been used to integrate equation (2.1) for each value of kz.
The size of the computational domain is large in order to minimize the effect of the
periodic boundary conditions: Lx = Ly =30a. The number of collocation points is
Mx = My = 256 and the time step is δt =0.01πa2/Γ . The perturbation of velocity u is
initialized by a divergence-free white noise and after integrating equation (2.1) for a
sufficiently long time, the most unstable eigenmode dominates the perturbation (see
Otheguy et al. 2006 for further details).

In the present paper, this stability analysis is performed mainly for a single Froude
number Fh = Γ/πa2N = 1 as a function of the Rossby number Ro defined as

Ro =
Γ

πa2f
. (2.3)

The Reynolds number is Re= 16000 and the Schmidt number is Sc= ν/D =1.
Figure 2 represents the evolution of the growth rate of the zigzag instability as a

function of the vertical wavenumber kz for various cyclonic rotations for which the
Rossby number is positive, and anticyclonic rotations for which the Rossby number
is negative. When Ro = ∞, the zigzag instability destabilizes a large band of vertical
wavenumbers 0 � kzb � 18. The maximum growth rate has been shown in Otheguy
et al. (2006) to be approximately equal to twice the external strain S = Γ/2πb2 and the
most amplified wavenumber is around kzb = 10 for Fh =1. When planetary rotation
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Figure 2. Growth rate of the zigzag instability σ normalized by the strain rate S = Γ/2πb2

plotted against the vertical wavenumber kz scaled by the separation distance b for Fh = 1,
Re= 16000, a/b = 0.15 and Ro= ∞ (+), Ro= ± 5 (�, �), Ro= ± 2.5 (�, �) and Ro = ±0.5
(�, �). Cyclonic rotations are represented by filled symbols whereas anticyclonic rotations are
represented by open symbols.

is present, all the curves keep the same shape with a maximum growth rate varying
very little, but the most amplified wavenumber varies considerably depending on the
Rossby number Ro. For large Ro (Ro = ±5), the effects of cyclonic and anticyclonic
rotations are different. The cyclonic rotation tends to shift the curve relative to the
Ro = ∞ curve towards smaller wavenumbers while anticyclonic rotation displaces the
curves towards higher wavenumbers. For smaller Ro (Ro = ±2.5), both cyclonic and
anticyclonic rotations shift the curves towards smaller wavenumbers but not by the
same amount. For Ro = ±0.5, the effect of anticyclonic rotation is the same as for
cyclonic rotation: the two growth rate curves are almost superimposed.

Figure 3 shows the maximum growth rate and the corresponding most amplified
vertical wavenumber as a function of the Rossby number. As already seen in figure 2,
the maximum growth rate is almost independent of the planetary rotation (figure 3a)
although it is slightly smaller for positive Rossby numbers and small negative Rossby
numbers than for Ro = ∞. For anticyclonic rotations Ro � −1, the maximum growth
rate is slightly enhanced. In contrast, the most unstable wavenumber varies strongly
with Ro (figure 3b). For small Rossby numbers, the most unstable wavenumber
increases linearly with Ro with the same slope for cyclonic and anticyclonic rotations.
For positive Rossby numbers, the wavenumber continues to increase monotonically
and tends to the non-rotating value kzm (Ro = ∞) as the Rossby number increases.
In contrast, the most unstable wavenumber reaches a maximum for negative Rossby
numbers and then decreases asymptotically towards kzm (Ro = ∞).

Strikingly, the entire dependence of the most unstable wavenumber kzm on the
Rossby number Ro for a constant horizontal Froude number (Fh = 1) follows the law

kzmb = f (Ro) =

(
γ1

Ro2
+

γ2

Ro
+ γ3

)−1/2

(2.4)
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Figure 3. (a) Maximum growth rate normalized by the external strain rate σm/S and
(b) most amplified wavenumber Fhkzmb plotted against the Rossby number Ro for Re= 16000.
The asymptotic values σm(Ro= ∞) and kzm(Ro= ∞) are represented by a horizontal line. The
dashed line in (b) represents the high-rotation-rate approximation: kzmbFh = 1.74Ro. The solid
lines display the fit kzm = f (Ro)/Fhb. The symbols �, � represent Fh =1 and a/b = 0.15; �, �

represent Fh = 0.5 and a/b = 0.15 and �, � Fh = 1 and a/b =0.21 for cyclonic rotation (filled
symbols) and anticyclonic rotation (open symbols). The symbols × correspond to the point
Ro= 0.15 and Fh =0.015, which are typical parameter values characterizing most mesoscale
eddies in the ocean.

where the constants γ1 = 0.33, γ2 = 0.09, γ3 = 0.01 are the same both for cyclonic
(Ro > 0) and anticyclonic (Ro < 0) rotations. The function f (Ro) is always real even
for negative Ro.

Alternatively, when the horizontal Froude number Fh is varied, it has been shown
in Otheguy et al. (2006) that kzm ∝ 1/Fhb when there is no rotation (Ro = ∞). Without
further argument, these two scaling laws can be combined in the general form
kzm = F (Ro, Fh)/Fhb where F is a priori a function of Fh and Ro. However, the
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scaling analysis of Billant & Chomaz (2001) for strongly stratified rotating flows has
proved that the function F (Ro, Fh) does not depend on Fh when Fh � 1 whatever the
Rossby number Ro is. This implies

kzm =
f (Ro)

Fhb
(2.5)

for any Rossby number and any small Froude number. This scaling law has been
checked by considering the case Fh = 0.5 for finite Rossby numbers. Figure 3(b) shows
that the scaled wavenumber kzmFhb does indeed follow the curve f (Ro) strikingly.
Another value of the ratio a/b has also been considered, a/b = 0.21, for Fh =1.
Varying a/b corresponds to varying the strain S. Again, the wavenumber follows the
same universal scaling law. The growth rate normalized by the strain also remains
approximately the same although it is slightly reduced, in particular for large Rossby
numbers, as already noted in Otheguy et al. (2006) for Ro = ∞.

In the limit of small Rossby numbers, the most unstable wavenumber becomes
proportional to the ratio of the Rossby number to the Froude number:

kzm =
1

√
γ1

Ro

Fhb
=

1
√

γ1

N

f b
, (2.6)

i.e. to the ratio N/f in agreement with the quasi-geostrophic theory (Charney 1948).
However, a crucial difference with the scaling laws reported previously (Dritschel &
de la Torre Juárez 1996) in quasi-geostrophic fluid is that the most unstable wavelength
λm = 2π/kzm ≈ 3.6bf/N is proportional to the separation distance b and not to the
vortex radius a. This dependence on b has also been noted by Dritschel (2002) and
might explain why different constants of proportionality have been reported in quasi-
geostrophic turbulence since the wavelength was scaled by f a/N (McWilliams 1990;
Reinaud, Dritschel & Koudella 2003; McWilliams, Weiss & Yavneh 1999).

The distribution of vorticity inside each vortex is also expected to affect the constant
of proportionality (here equal to 3.6) but not the scaling of the wavelength on b. Here,
a Gaussian vorticity profile has been chosen while in Dritschel & de la Torre Juárez
(1996), the vorticity is taken constant inside the vortex core. A further possible reason
for these differences in the literature is that the height of the computational domain
is often smaller than the most amplified wavelength so that the top and bottom
boundary conditions might influence the wavelength selection.

Figure 4 displays the growth rate curves of figure 2 plotted as a function of the
rescaled wavenumber kzb/f (Ro). The collapse is very good for all the wavenumbers
but better for small wavenumbers. This means that the scaling is not only valid for the
most unstable wavenumber but also for all the wavenumbers, i.e. σ (kz, b, Ro, Fh) ≈
Sσ̃ (kzbFh/f (Ro)), where σ̃ is a single function of the rescaled wavenumber.

Figure 5 shows the vertical vorticity of the eigenmode for different Rossby numbers
and for the most unstable wavenumber. The same dipolar shape in each vortex
core with the same orientation (angle between the dipole axis and the line joining the
vortices) is observed for all the Rossby numbers. As explained in Otheguy et al. (2006)
this shape corresponds to a bending of each vortex obliquely in opposite directions,
with no deformation of their core. Together with the results found in Otheguy et al.
(2006) where the Rossby number was infinite and the Froude number was varied,
from this we conclude that the self-similarity property of the zigzag instability on the
single variable kzFhb/f (Ro) is therefore a fundamental property of the growth rate as
well as the shape of the eigenmode of the instability.



Effect of planetary rotation on the zigzag instability of co-rotating vortices 279

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80

0.4

0.8

1.2

1.6

2.0

kz b/f (Ro)

σ

S

Figure 4. Growth rate of the zigzag instability normalized by the strain rate σ/S plotted
against the vertical wavenumber kz rescaled by b/f (Ro) for Fh =1, Re= 16000, a/b = 0.15 and
Ro= ∞ (+), Ro= ±5 (�, �), Ro= ±2.5 (�, �) and Ro= ±0.5 (�, �). Cyclonic rotations are
represented by filled symbols whereas anticyclonic rotations are represented by open symbols.
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Figure 5. Vertical vorticity of the eigenmode for different Rossby numbers for the most
unstable wavenumber. The Froude number is Fh = 1 and the Reynolds number Re = 16000.
Shaded regions indicate positive vorticity.

3. Discussion
Oceanic and atmospheric flows at large scales (>500 km) have both a small Froude

number and a small Rossby number so that the quasi-geostrophic approximation is
valid. The typical value f/N = 0.1 for the oceans at mid-latitudes corresponds to a
wavelength λ=0.36b for the zigzag or tall-column instability while in the atmosphere,
the typical value is f/N = 0.01 leading to λ= 0.036b. With solid boundary conditions,
the zigzag or tall-column instability would be observed on co-rotating Gaussian
columnar vortices of equal intensity in the atmosphere or oceans only if the instability
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wavelength were smaller or at least of the same order as the fluid height H : λ� H .
This puts a strong constraint on the size of the vortices on which the zigzag or
tall-column instability could be observed. However, it should be noted that the zigzag
or tall-column instability is a long-wavelength instability which destabilizes all the
wavelengths in the band [λcutoff, ∞] so that large vortices can still be affected if
H � λcutoff. Furthermore, in the case of free boundary conditions, the vortices can be
bent even if a wavelength does not fit within the fluid height.

For an ocean 5 km deep, the maximum value of the separation distance b allowing
one entire wavelength to be observed is b = 14 km meaning that the zigzag instability
will display one entire wavelength only for vortices of scale about 10 km and smaller.
For example, mesoscale eddies observed in the Gulf Stream, Mediterranean sea
(Richardson 1993), Hawaiian sea (Chavanne et al. 2002) or in the Bay of Biscay
(Pingree & Le Cann 1992) have a typical radius around 150 km, and are characterized
by typical Ro = 0.15 and Fh=0.015. The zigzag or tall-column instability scaling then
predicts (figure 3b) λ≈ 0.36b > O(100) km, a far too large value to fit a wavelength in
the ocean depth since b should be larger than 2a. It should be mentioned however
that this estimate has been obtained by assuming the constant ratio f/N = 0.1 while
in practice this ratio can be smaller and varies spatially.

Smaller vortices observed in the Ligurian Sea (Marullo, Salusti & Viola 1985) or
in the Southern California Bight (DiGiacomo & Holt 2001) have a radius of about
5 km, a typical velocity of 0.5 m s−1 and are approximately 150 m deep. They are loca-
lized mainly in the thermocline where the stratification is approximately N ≈ 10−2 s−1

so that f/N ≈ 0.01. The Rossby and Froude numbers corresponding to these eddies
are about Ro ≈ 2 and Fh ≈ 0.02. The scaling (2.5) can be applied and yield λ≈ 0.04b.
Most eddies are typically separated by a distance O(10 km) which gives half a wave-
length of order λ/2 ∼ O(200 m), in agreement with their typical depth. The zigzag or
tall-column instability is probably very active since cyclonic vortices are found to be
numerous in small areas (DiGiacomo & Holt 2001), promoting vortex interactions
and thereby the instability.

4. Conclusion
We have shown that the zigzag instability remains active on a co-rotating pair of

vortices in the presence of planetary rotation. It is therefore of the same physical nature
as the tall-column instability shown by Dritschel & de la Torre Juárez (1996) (see also
Dritschel, de la Torre Juárez & Ambaum 1999; Dritschel 2002; Reinaud & Dritschel
2005) to cause the breakdown of columnar vortices in the presence of strain in a
quasi-geostrophic fluid. Its growth rate is proportional to the strain rate S = Γ/2πb2

and almost independent of the Rossby number but the vertical wavelength varies

according to the universal scaling λ= 2πFhb
√

γ1/Ro2 + γ2/Ro + γ3, i.e. from λ/b ∝ Fh

for Ro = ∞ to λ/b ∝ Fh/Ro ∝ f/N for Ro � 1. This instability therefore should play
a major role for a wide range of geophysical scales since its existence requires only
that the Froude number is low. A striking result is that the wavelength is proportional
to the distance between the vortices and independent of the vortex radius. This might
explain why different scaling laws in term of the vortex radius have been reported
for quasi-geostrophic fluids (Dritschel & de la Torre Juárez 1996; McWilliams 1990;
Reinaud et al. 2003; McWilliams et al. 1999). Because of this dependence on the
separation distance b, the wavelength of the zigzag or tall-column instability in the
quasi-geostrophic regime is relatively large compared to the height of the atmosphere
or the oceans except when the vortices are close to one another.
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